Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE
نویسندگان
چکیده
منابع مشابه
Well-posedness and Regularity for Quasilinear Degenerate Parabolic-hyperbolic Spde
We study quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations with general multiplicative noise within the framework of kinetic solutions. Our results are twofold: First, we establish new regularity results based on averaging techniques. Second, we prove the existence and uniqueness of solutions in a full L1 setting requiring no growth assumptions on the nonline...
متن کاملWell-posedness for Non-isotropic Degenerate Parabolic-hyperbolic Equations
We develop a well-posedness theory for solutions in L to the Cauchy problem of general degenerate parabolic-hyperbolic equations with non-isotropic nonlinearity. A new notion of entropy and kinetic solutions and a corresponding kinetic formulation are developed which extends the hyperbolic case. The notion of kinetic solutions applies to more general situations than that of entropy solutions; a...
متن کاملWell-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology∗
We study the existence of classical solutions of a taxis-diffusion-reaction model for tumour-induced blood vessel growth. The model in its basic form has been proposed by Chaplain and Stuart (IMA J. Appl. Med. Biol. (10), 1993) and consists of one equation for the endothelial cell-density and another one for the concentration of tumour angiogenesis factor (TAF). Here we consider the special and...
متن کاملWell-posedness Results for Triply Nonlinear Degenerate Parabolic Equations
We study the well-posedness of triply nonlinear degenerate ellipticparabolic-hyperbolic problem b(u)t − div ã(u, ∇φ(u)) + ψ(u) = f, u|t=0 = u0 in a bounded domain with homogeneous Dirichlet boundary conditions. The nonlinearities b, φ and ψ are supposed to be continuous non-decreasing, and the nonlinearity ã falls within the Leray-Lions framework. Some restrictions are imposed on the dependence...
متن کاملWell-posedness of a quasilinear hyperbolic fluid model
We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations. For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 2018
ISSN: 0091-1798
DOI: 10.1214/17-aop1231